Lifelong Neural Topic Learning in Contextualized Autoregressive Topic Models of Language via Informative Transfers

09/29/2019
by   Yatin Chaudhary, et al.
0

Topic models such as LDA, DocNADE, iDocNADEe have been popular in document analysis. However, the traditional topic models have several limitations including: (1) Bag-of-words (BoW) assumption, where they ignore word ordering, (2) Data sparsity, where the application of topic models is challenging due to limited word co-occurrences, leading to incoherent topics and (3) No Continuous Learning framework for topic learning in lifelong fashion, exploiting historical knowledge (or latent topics) and minimizing catastrophic forgetting. This thesis focuses on addressing the above challenges within neural topic modeling framework. We propose: (1) Contextualized topic model that combines a topic and a language model and introduces linguistic structures (such as word ordering, syntactic and semantic features, etc.) in topic modeling, (2) A novel lifelong learning mechanism into neural topic modeling framework to demonstrate continuous learning in sequential document collections and minimizing catastrophic forgetting. Additionally, we perform a selective data augmentation to alleviate the need for complete historical corpora during data hallucination or replay.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset