Leveraging Video Descriptions to Learn Video Question Answering

11/12/2016
by   Kuo-Hao Zeng, et al.
0

We propose a scalable approach to learn video-based question answering (QA): answer a "free-form natural language question" about a video content. Our approach automatically harvests a large number of videos and descriptions freely available online. Then, a large number of candidate QA pairs are automatically generated from descriptions rather than manually annotated. Next, we use these candidate QA pairs to train a number of video-based QA methods extended fromMN (Sukhbaatar et al. 2015), VQA (Antol et al. 2015), SA (Yao et al. 2015), SS (Venugopalan et al. 2015). In order to handle non-perfect candidate QA pairs, we propose a self-paced learning procedure to iteratively identify them and mitigate their effects in training. Finally, we evaluate performance on manually generated video-based QA pairs. The results show that our self-paced learning procedure is effective, and the extended SS model outperforms various baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro