Less is More: Rejecting Unreliable Reviews for Product Question Answering
Promptly and accurately answering questions on products is important for e-commerce applications. Manually answering product questions (e.g. on community question answering platforms) results in slow response and does not scale. Recent studies show that product reviews are a good source for real-time, automatic product question answering (PQA). In the literature, PQA is formulated as a retrieval problem with the goal to search for the most relevant reviews to answer a given product question. In this paper, we focus on the issue of answerability and answer reliability for PQA using reviews. Our investigation is based on the intuition that many questions may not be answerable with a finite set of reviews. When a question is not answerable, a system should return nil answers rather than providing a list of irrelevant reviews, which can have significant negative impact on user experience. Moreover, for answerable questions, only the most relevant reviews that answer the question should be included in the result. We propose a conformal prediction based framework to improve the reliability of PQA systems, where we reject unreliable answers so that the returned results are more concise and accurate at answering the product question, including returning nil answers for unanswerable questions. Experiments on a widely used Amazon dataset show encouraging results of our proposed framework. More broadly, our results demonstrate a novel and effective application of conformal methods to a retrieval task.
READ FULL TEXT