Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters

10/08/2019
by   Matthias Bentert, et al.
0

In the presented paper we study the Length-Bounded Cut problem for special graph classes as well as from a parameterized-complexity viewpoint. Here, we are given a graph G, two vertices s and t, and positive integers β and λ. The task is to find a set of edges F of size at most β such that every s-t-path of length at most λ in G contains some edge in F. Bazgan et al. conjectured that Length-Bounded Cut admits a polynomial-time algorithm if the input graph G is a proper interval graph. We confirm this conjecture by showing a dynamic-programming based polynomial-time algorithm. We strengthen the W[1]-hardness result of Dvořák and Knop. Our reduction is shorter, seems simpler to describe, and the target of the reduction has stronger structural properties. Consequently, we give W[1]-hardness for the combined parameter pathwidth and maximum degree of the input graph. Finally, we prove that Length-Bounded Cut is W[1]-hard for the feedback vertex number. Both our hardness results complement known XP algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset