DeepAI AI Chat
Log In Sign Up

LeDeepChef: Deep Reinforcement Learning Agent for Families of Text-Based Games

by   Leonard Adolphs, et al.
ETH Zurich

While Reinforcement Learning (RL) approaches lead to significant achievements in a variety of areas in recent history, natural language tasks remained mostly unaffected, due to the compositional and combinatorial nature that makes them notoriously hard to optimize. With the emerging field of Text-Based Games (TBGs), researchers try to bridge this gap. Inspired by the success of RL algorithms on Atari games, the idea is to develop new methods in a restricted game world and then gradually move to more complex environments. Previous work in the area of TBGs has mainly focused on solving individual games. We, however, consider the task of designing an agent that not just succeeds in a single game, but performs well across a whole family of games, sharing the same theme. In this work, we present our deep RL agent--LeDeepChef--that shows generalization capabilities to never-before-seen games of the same family with different environments and task descriptions. The agent participated in Microsoft Research's "First TextWorld Problems: A Language and Reinforcement Learning Challenge" and outperformed all but one competitor on the final test set. The games from the challenge all share the same theme, namely cooking in a modern house environment, but differ significantly in the arrangement of the rooms, the presented objects, and the specific goal (recipe to cook). To build an agent that achieves high scores across a whole family of games, we use an actor-critic framework and prune the action-space by using ideas from hierarchical reinforcement learning and a specialized module trained on a recipe database.


page 1

page 2

page 3

page 4


Potential-based reward shaping for learning to play text-based adventure games

Text-based games are a popular testbed for language-based reinforcement ...

VisualHints: A Visual-Lingual Environment for Multimodal Reinforcement Learning

We present VisualHints, a novel environment for multimodal reinforcement...

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?

Deep reinforcement learning has achieved many recent successes, but our ...

Towards Solving Text-based Games by Producing Adaptive Action Spaces

To solve a text-based game, an agent needs to formulate valid text comma...

Towards automating Codenames spymasters with deep reinforcement learning

Although most reinforcement learning research has centered on competitiv...

Agent57: Outperforming the Atari Human Benchmark

Atari games have been a long-standing benchmark in the reinforcement lea...

SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning

Open-world survival games pose significant challenges for AI algorithms ...