Learning Visual Representations with Caption Annotations

08/04/2020 ∙ by Mert Bülent Sarıyıldız, et al. ∙ 0

Pretraining general-purpose visual features has become a crucial part of tackling many computer vision tasks. While one can learn such features on the extensively-annotated ImageNet dataset, recent approaches have looked at ways to allow for noisy, fewer, or even no annotations to perform such pretraining. Starting from the observation that captioned images are easily crawlable, we argue that this overlooked source of information can be exploited to supervise the training of visual representations. To do so, motivated by the recent progresses in language models, we introduce image-conditioned masked language modeling (ICMLM) – a proxy task to learn visual representations over image-caption pairs. ICMLM consists in predicting masked words in captions by relying on visual cues. To tackle this task, we propose hybrid models, with dedicated visual and textual encoders, and we show that the visual representations learned as a by-product of solving this task transfer well to a variety of target tasks. Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations. Project website: https://europe.naverlabs.com/icmlm.



There are no comments yet.


page 1

page 24

page 25

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.