DeepAI
Log In Sign Up

Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

12/10/2020
by   Yulei Qin, et al.
3

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models will be available later at http://www.pami.sjtu.edu.cn.

READ FULL TEXT

page 1

page 3

page 5

page 10

page 11

page 12

01/29/2022

BREAK: Bronchi Reconstruction by gEodesic transformation And sKeleton embedding

Airway segmentation is critical for virtual bronchoscopy and computer-ai...
09/07/2021

FDA: Feature Decomposition and Aggregation for Robust Airway Segmentation

3D Convolutional Neural Networks (CNNs) have been widely adopted for air...
06/05/2022

MPANet: Multi-Patch Attention For Infrared Small Target object Detection

Infrared small target detection (ISTD) has attracted widespread attentio...
05/07/2019

Feature-Fused Context-Encoding Network for Neuroanatomy Segmentation

Automatic segmentation of fine-grained brain structures remains a challe...
09/26/2021

A Novel Hybrid Convolutional Neural Network for Accurate Organ Segmentation in 3D Head and Neck CT Images

Radiation therapy (RT) is widely employed in the clinic for the treatmen...
08/02/2019

Learning Lightweight Lane Detection CNNs by Self Attention Distillation

Training deep models for lane detection is challenging due to the very s...
02/14/2020

Liver Segmentation in Abdominal CT Images via Auto-Context Neural Network and Self-Supervised Contour Attention

Accurate image segmentation of the liver is a challenging problem owing ...