Learning Topic Models by Neighborhood Aggregation
Topic models are one of the most frequently used models in machine learning due to its high interpretability and modular structure. However extending the model to include supervisory signal, incorporate pre-trained word embedding vectors and add nonlinear output function to the model is not an easy task because one has to resort to highly intricate approximate inference procedure. In this paper, we show that topic models could be viewed as performing a neighborhood aggregation algorithm where the messages are passed through a network defined over words. Under the network view of topic models, nodes corresponds to words in a document and edges correspond to either a relationship describing co-occurring words in a document or a relationship describing same word in the corpus. The network view allows us to extend the model to include supervisory signals, incorporate pre-trained word embedding vectors and add nonlinear output function to the model in a simple manner. Moreover, we describe a simple way to train the model that is well suited in a semi-supervised setting where we only have supervisory signals for some portion of the corpus and the goal is to improve prediction performance in the held-out data. Through careful experiments we show that our approach outperforms state-of-the-art supervised Latent Dirichlet Allocation implementation in both held-out document classification tasks and topic coherence.
READ FULL TEXT