Learning to Recommend Items to Wikidata Editors

by   Kholoud Alghamdi, et al.

Wikidata is an open knowledge graph built by a global community of volunteers. As it advances in scale, it faces substantial challenges around editor engagement. These challenges are in terms of both attracting new editors to keep up with the sheer amount of work and retaining existing editors. Experience from other online communities and peer-production systems, including Wikipedia, suggests that personalised recommendations could help, especially newcomers, who are sometimes unsure about how to contribute best to an ongoing effort. For this reason, we propose a recommender system WikidataRec for Wikidata items. The system uses a hybrid of content-based and collaborative filtering techniques to rank items for editors relying on both item features and item-editor previous interaction. A neural network, named a neural mixture of representations, is designed to learn fine weights for the combination of item-based representations and optimize them with editor-based representation by item-editor interaction. To facilitate further research in this space, we also create two benchmark datasets, a general-purpose one with 220,000 editors responsible for 14 million interactions with 4 million items and a second one focusing on the contributions of more than 8,000 more active editors. We perform an offline evaluation of the system on both datasets with promising results. Our code and datasets are available at https://github.com/WikidataRec-developer/Wikidata_Recommender.


page 1

page 2

page 3

page 4


Deep Item-based Collaborative Filtering for Sparse Implicit Feedback

Recommender systems are ubiquitous in the domain of e-commerce, used to ...

Exploring and Eliciting Needs and Preferences from Editors for Wikidata Recommendations

Wikidata is an open knowledge graph created, managed, and maintained col...

Knowledge-aware Coupled Graph Neural Network for Social Recommendation

Social recommendation task aims to predict users' preferences over items...

Disentangled Graph Collaborative Filtering

Learning informative representations of users and items from the interac...

Deep neural network marketplace recommenders in online experiments

Recommendations are broadly used in marketplaces to match users with ite...

GRAM: Fast Fine-tuning of Pre-trained Language Models for Content-based Collaborative Filtering

Content-based collaborative filtering (CCF) predicts user-item interacti...

Scalable Realistic Recommendation Datasets through Fractal Expansions

Recommender System research suffers currently from a disconnect between ...

Please sign up or login with your details

Forgot password? Click here to reset