Learning to gesticulate by observation using a deep generative approach
The goal of the system presented in this paper is to develop a natural talking gesture generation behavior for a humanoid robot, by feeding a Generative Adversarial Network (GAN) with human talking gestures recorded by a Kinect. A direct kinematic approach is used to translate from human poses to robot joint positions. The provided videos show that the robot is able to use a wide variety of gestures, offering a non-dreary, natural expression level.
READ FULL TEXT