Learning to Explore by Reinforcement over High-Level Options

11/02/2021
by   Liu Juncheng, et al.
0

Autonomous 3D environment exploration is a fundamental task for various applications such as navigation. The goal of exploration is to investigate a new environment and build its occupancy map efficiently. In this paper, we propose a new method which grants an agent two intertwined options of behaviors: "look-around" and "frontier navigation". This is implemented by an option-critic architecture and trained by reinforcement learning algorithms. In each timestep, an agent produces an option and a corresponding action according to the policy. We also take advantage of macro-actions by incorporating classic path-planning techniques to increase training efficiency. We demonstrate the effectiveness of the proposed method on two publicly available 3D environment datasets and the results show our method achieves higher coverage than competing techniques with better efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro