Learning to Detect and Segment for Open Vocabulary Object Detection
Open vocabulary object detection has been greatly advanced by the recent development of vision-language pretrained model, which helps recognize novel objects with only semantic categories. The prior works mainly focus on knowledge transferring to the object proposal classification and employ class-agnostic box and mask prediction. In this work, we propose CondHead, a principled dynamic network design to better generalize the box regression and mask segmentation for open vocabulary setting. The core idea is to conditionally parameterize the network heads on semantic embedding and thus the model is guided with class-specific knowledge to better detect novel categories. Specifically, CondHead is composed of two streams of network heads, the dynamically aggregated head and the dynamically generated head. The former is instantiated with a set of static heads that are conditionally aggregated, these heads are optimized as experts and are expected to learn sophisticated prediction. The latter is instantiated with dynamically generated parameters and encodes general class-specific information. With such a conditional design, the detection model is bridged by the semantic embedding to offer strongly generalizable class-wise box and mask prediction. Our method brings significant improvement to the state-of-the-art open vocabulary object detection methods with very minor overhead, e.g., it surpasses a RegionClip model by 3.0 detection AP on novel categories, with only 1.1
READ FULL TEXT