Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions

09/23/2019
by   Boris Knyazev, et al.
3

Graphs evolving over time are a natural way to represent data in many domains, such as social networks, bioinformatics, physics and finance. Machine learning methods for graphs, which leverage such data for various prediction tasks, have seen a recent surge of interest and capability. In practice, ground truth edges between nodes in these graphs can be unknown or suboptimal, which hurts the quality of features propagated through the network. Building on recent progress in modeling temporal graphs and learning latent graphs, we extend two methods, Dynamic Representation (DyRep) and Neural Relational Inference (NRI), for the task of dynamic link prediction. We explore the effect of learning temporal attention edges using NRI without requiring the ground truth graph. In experiments on the Social Evolution dataset, we show semantic interpretability of learned attention, often outperforming the baseline DyRep model that uses a ground truth graph to compute attention. In addition, we consider functions acting on pairs of nodes, which are used to predict link or edge representations. We demonstrate that in all cases, our bilinear transformation is superior to feature concatenation, typically employed in prior work. Source code is available at https://github.com/uoguelph-mlrg/LDG.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset