Learning Symmetry and Low-energy Locomotion

01/24/2018
by   Wenhao Yu, et al.
0

Learning locomotion skills is a challenging problem. To generate realistic and smooth locomotion, existing methods use motion capture, finite state machines or morphology-specific knowledge to guide the motion generation algorithms. Deep reinforcement learning (DRL) is a promising approach for the automatic creation of locomotion control. Indeed, a standard benchmark for DRL is to automatically create a running controller for a biped character from a simple reward function. Although several different DRL algorithms can successfully create a running controller, the resulting motions usually look nothing like a real runner. This paper takes a minimalist learning approach to the locomotion problem, without the use of motion examples, finite state machines, or morphology-specific knowledge. We introduce two modifications to the DRL approach that, when used together, produce locomotion behaviors that are symmetric, low-energy, and much closer to that of a real person. First, we introduce a new term to the loss function (not the reward function) that encourages symmetric actions. Second, we introduce a new curriculum learning method that provides modulated physical assistance to help the character with left/right balance and forward movement. The algorithm automatically computes appropriate assistance to the character and gradually relaxes this assistance, so that eventually the character learns to move entirely without help. Because our method does not make use of motion capture data, it can be applied to a variety of character morphologies. We demonstrate locomotion controllers for the lower half of a biped, a full humanoid, a quadruped, and a hexapod. Our results show that learned policies are able to produce symmetric, low-energy gaits. In addition, speed-appropriate gait patterns emerge without any guidance from motion examples or contact planning.

READ FULL TEXT
research
01/24/2018

Learning Symmetric and Low-energy Locomotion

Learning locomotion skills is a challenging problem. To generate realist...
research
06/01/2021

DeepWalk: Omnidirectional Bipedal Gait by Deep Reinforcement Learning

Bipedal walking is one of the most difficult but exciting challenges in ...
research
03/15/2018

Feedback Control For Cassie With Deep Reinforcement Learning

Bipedal locomotion skills are challenging to develop. Control strategies...
research
06/13/2023

SayTap: Language to Quadrupedal Locomotion

Large language models (LLMs) have demonstrated the potential to perform ...
research
10/08/2018

SFV: Reinforcement Learning of Physical Skills from Videos

Data-driven character animation based on motion capture can produce high...
research
11/07/2014

Footprint-Driven Locomotion Composition

One of the most efficient ways of generating goal-directed walking motio...
research
04/14/2023

Learning Perceptive Bipedal Locomotion over Irregular Terrain

In this paper we propose a novel bipedal locomotion controller that uses...

Please sign up or login with your details

Forgot password? Click here to reset