Learning stochastic decision trees

05/08/2021
by   Guy Blanc, et al.
0

We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally resilient to adversarial noise. Given an η-corrupted set of uniform random samples labeled by a size-s stochastic decision tree, our algorithm runs in time n^O(log(s/ε)/ε^2) and returns a hypothesis with error within an additive 2η + ε of the Bayes optimal. An additive 2η is the information-theoretic minimum. Previously no non-trivial algorithm with a guarantee of O(η) + ε was known, even for weaker noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision tree; previously no such algorithm was known even in the noiseless setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro