Learning Stable and Robust Linear Parameter-Varying State-Space Models

04/04/2023
by   Chris Verhoek, et al.
0

This paper presents two direct parameterizations of stable and robust linear parameter-varying state-space (LPV-SS) models. The model parametrizations guarantee a priori that for all parameter values during training, the allowed models are stable in the contraction sense or have their Lipschitz constant bounded by a user-defined value γ. Furthermore, since the parametrizations are direct, the models can be trained using unconstrained optimization. The fact that the trained models are of the LPV-SS class makes them useful for, e.g., further convex analysis or controller design. The effectiveness of the approach is demonstrated on an LPV identification problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset