Learning Skill Equivalencies Across Platform Taxonomies
Assessment and reporting of skills is a central feature of many digital learning platforms. With students often using multiple platforms, cross-platform assessment has emerged as a new challenge. While technologies such as Learning Tools Interoperability (LTI) have enabled communication between platforms, reconciling the different skill taxonomies they employ has not been solved at scale. In this paper, we introduce and evaluate a methodology for finding and linking equivalent skills between platforms by utilizing problem content as well as the platform's clickstream data. We propose six models to represent skills as continuous real-valued vectors and leverage machine translation to map between skill spaces. The methods are tested on three digital learning platforms: ASSISTments, Khan Academy, and Cognitive Tutor. Our results demonstrate reasonable accuracy in skill equivalency prediction from a fine-grained taxonomy to a coarse-grained one, achieving an average recall@5 of 0.8 between the three platforms. Our skill translation approach has implications for aiding in the tedious, manual process of taxonomy to taxonomy mapping work, also called crosswalks, within the tutoring as well as standardized testing worlds.
READ FULL TEXT