Learning Representations for Sub-Symbolic Reasoning

06/01/2021 ∙ by Giuseppe Marra, et al. ∙ 0

Neuro-symbolic methods integrate neural architectures, knowledge representation and reasoning. However, they have been struggling at both dealing with the intrinsic uncertainty of the observations and scaling to real world applications. This paper presents Relational Reasoning Networks (R2N), a novel end-to-end model that performs relational reasoning in the latent space of a deep learner architecture, where the representations of constants, ground atoms and their manipulations are learned in an integrated fashion. Unlike flat architectures like Knowledge Graph Embedders, which can only represent relations between entities, R2Ns define an additional computational structure, accounting for higher-level relations among the ground atoms. The considered relations can be explicitly known, like the ones defined by logic formulas, or defined as unconstrained correlations among groups of ground atoms. R2Ns can be applied to purely symbolic tasks or as a neuro-symbolic platform to integrate learning and reasoning in heterogeneous problems with both symbolic and feature-based represented entities. The proposed model bridges the gap between previous neuro-symbolic methods that have been either limited in terms of scalability or expressivity. The proposed methodology is shown to achieve state-of-the-art results in different experimental settings.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.