Learning Neural Networks with Competing Physics Objectives: An Application in Quantum Mechanics

by   Jie Bu, et al.

Physics-guided Machine Learning (PGML) is an emerging field of research in machine learning (ML) that aims to harness the power of ML advances without ignoring the rich knowledge of physics underlying scientific phenomena. One of the promising directions in PGML is to modify the objective function of neural networks by adding physics-guided (PG) loss functions that measure the violation of physics objectives in the ANN outputs. Existing PGML approaches generally focus on incorporating a single physics objective as a PG loss, using constant trade-off parameters. However, in the presence of multiple physics objectives with competing non-convex PG loss terms, there is a need to adaptively tune the importance of competing PG loss terms during the process of neural network training. We present a novel approach to handle competing PG loss terms in the illustrative application of quantum mechanics, where the two competing physics objectives are minimizing the energy while satisfying the Schrodinger equation. We conducted a systematic evaluation of the effects of PG loss on the generalization ability of neural networks in comparison with several baseline methods in PGML. All the code and data used in this work is available at https://github.com/jayroxis/Cophy-PGNN.


Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing

Recent breakthroughs in computing power have made it feasible to use mac...

Understanding and mitigating gradient pathologies in physics-informed neural networks

The widespread use of neural networks across different scientific domain...

Multi-task problems are not multi-objective

Multi-objective optimization (MOO) aims at finding a set of optimal conf...

An introduction to programming Physics-Informed Neural Network-based computational solid mechanics

Physics-informed neural network (PINN) has recently gained increasing in...

Applying physics-based loss functions to neural networks for improved generalizability in mechanics problems

Physics-Informed Machine Learning (PIML) has gained momentum in the last...

What can we Learn by Predicting Accuracy?

This paper seeks to answer the following question: "What can we learn by...

Please sign up or login with your details

Forgot password? Click here to reset