Learning Logistic Circuits

02/27/2019 ∙ by Yitao Liang, et al. ∙ 8

This paper proposes a new classification model called logistic circuits. On MNIST and Fashion datasets, our learning algorithm outperforms neural networks that have an order of magnitude more parameters. Yet, logistic circuits have a distinct origin in symbolic AI, forming a discriminative counterpart to probabilistic-logical circuits such as ACs, SPNs, and PSDDs. We show that parameter learning for logistic circuits is convex optimization, and that a simple local search algorithm can induce strong model structures from data.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.