Learning Joint 2D 3D Diffusion Models for Complete Molecule Generation

05/21/2023
by   Han Huang, et al.
0

Designing new molecules is essential for drug discovery and material science. Recently, deep generative models that aim to model molecule distribution have made promising progress in narrowing down the chemical research space and generating high-fidelity molecules. However, current generative models only focus on modeling either 2D bonding graphs or 3D geometries, which are two complementary descriptors for molecules. The lack of ability to jointly model both limits the improvement of generation quality and further downstream applications. In this paper, we propose a new joint 2D and 3D diffusion model (JODO) that generates complete molecules with atom types, formal charges, bond information, and 3D coordinates. To capture the correlation between molecular graphs and geometries in the diffusion process, we develop a Diffusion Graph Transformer to parameterize the data prediction model that recovers the original data from noisy data. The Diffusion Graph Transformer interacts node and edge representations based on our relational attention mechanism, while simultaneously propagating and updating scalar features and geometric vectors. Our model can also be extended for inverse molecular design targeting single or multiple quantum properties. In our comprehensive evaluation pipeline for unconditional joint generation, the results of the experiment show that JODO remarkably outperforms the baselines on the QM9 and GEOM-Drugs datasets. Furthermore, our model excels in few-step fast sampling, as well as in inverse molecule design and molecular graph generation. Our code is provided in https://github.com/GRAPH-0/JODO.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/28/2023

MUDiff: Unified Diffusion for Complete Molecule Generation

We present a new model for generating molecular data by combining discre...
research
01/01/2023

Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation

Learning the underlying distribution of molecular graphs and generating ...
research
05/11/2023

MolDiff: Addressing the Atom-Bond Inconsistency Problem in 3D Molecule Diffusion Generation

Deep generative models have recently achieved superior performance in 3D...
research
03/31/2022

Equivariant Diffusion for Molecule Generation in 3D

This work introduces a diffusion model for molecule generation in 3D tha...
research
09/13/2022

MDM: Molecular Diffusion Model for 3D Molecule Generation

Molecule generation, especially generating 3D molecular geometries from ...
research
02/17/2023

MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation

This work introduces MiDi, a diffusion model for jointly generating mole...
research
11/24/2018

DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation

Generating novel molecules with optimal properties is a crucial step in ...

Please sign up or login with your details

Forgot password? Click here to reset