DeepAI AI Chat
Log In Sign Up

Learning Intrinsic Symbolic Rewards in Reinforcement Learning

by   Hassam Sheikh, et al.

Learning effective policies for sparse objectives is a key challenge in Deep Reinforcement Learning (RL). A common approach is to design task-related dense rewards to improve task learnability. While such rewards are easily interpreted, they rely on heuristics and domain expertise. Alternate approaches that train neural networks to discover dense surrogate rewards avoid heuristics, but are high-dimensional, black-box solutions offering little interpretability. In this paper, we present a method that discovers dense rewards in the form of low-dimensional symbolic trees - thus making them more tractable for analysis. The trees use simple functional operators to map an agent's observations to a scalar reward, which then supervises the policy gradient learning of a neural network policy. We test our method on continuous action spaces in Mujoco and discrete action spaces in Atari and Pygame environments. We show that the discovered dense rewards are an effective signal for an RL policy to solve the benchmark tasks. Notably, we significantly outperform a widely used, contemporary neural-network based reward-discovery algorithm in all environments considered.


SIBRE: Self Improvement Based REwards for Reinforcement Learning

We propose a generic reward shaping approach for improving rate of conve...

Deep Black-Box Reinforcement Learning with Movement Primitives

-based reinforcement learning (ERL) algorithms treat reinforcement learn...

Improving Policy Gradient by Exploring Under-appreciated Rewards

This paper presents a novel form of policy gradient for model-free reinf...

Reinforcement Learning for Classical Planning: Viewing Heuristics as Dense Reward Generators

Recent advances in reinforcement learning (RL) have led to a growing int...

DiSProD: Differentiable Symbolic Propagation of Distributions for Planning

The paper introduces DiSProD, an online planner developed for environmen...

Provably efficient reconstruction of policy networks

Recent research has shown that learning poli-cies parametrized by large ...