Learning interpretable disease self-representations for drug repositioning

09/14/2019 ∙ by Fabrizio Frasca, et al. ∙ 14

Drug repositioning is an attractive cost-efficient strategy for the development of treatments for human diseases. Here, we propose an interpretable model that learns disease self-representations for drug repositioning. Our self-representation model represents each disease as a linear combination of a few other diseases. We enforce the proximity between diseases to preserve the geometric structure of the human phenome network - a domain-specific knowledge that naturally adds relational inductive bias to the disease self-representations. We prove that our method is globally optimal and show results outperforming state-of-the-art drug repositioning approaches. We further show that the disease self-representations are biologically interpretable.



There are no comments yet.


page 1

page 2

page 3

page 4

page 6

page 7

page 8

page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.