Learning in Confusion: Batch Active Learning with Noisy Oracle

09/27/2019 ∙ by Gaurav Gupta, et al. ∙ Bosch University of Southern California 0

We study the problem of training machine learning models incrementally using active learning with access to imperfect or noisy oracles. We specifically consider the setting of batch active learning, in which multiple samples are selected as opposed to a single sample as in classical settings so as to reduce the training overhead. Our approach bridges between uniform randomness and score based importance sampling of clusters when selecting a batch of new samples. Experiments on benchmark image classification datasets (MNIST, SVHN, and CIFAR10) shows improvement over existing active learning strategies. We introduce an extra denoising layer to deep networks to make active learning robust to label noises and show significant improvements.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.