1 Introduction
Dealing with uncertainty is fundamental in many tasks. Given an image, for example, one might think this is either an alpaca or a llama, but it is certainly not an elephant. When predicting the behavior of other drivers on the road, we also tend to make good guesses based on our learned expectations. If someone is driving forward in the right lane, one might think
they will probably continue straight or take a right turn soon
. In addition, uncertainty models incomplete information. For example, we may not be able to distinguish a mug from a cup if its handle is not visible. In short, when confronted with a situation that we are not sure about, we tend to produce multiple plausible hypotheses.In this work, we present a framework for multiple hypothesis prediction (MHP) which extends traditional singleloss, singleoutput systems to multiple outputs and which provides a piecewise constant approximation of the conditional output space. To achieve this, we propose a probabilistic formulation and show that minimizing this formulation yields a Voronoi tessellation in the output space that is induced by the chosen loss. Furthermore, we explain how this theoretical framework can be used in practice to train Convolutional Neural Networks (CNNs) that predict multiple hypotheses. By employing a novel
meta loss, training can be achieved through standard procedures, i.e. gradient descent and backpropagation.
Our framework has the following benefits. First, it is general in the sense that it can easily retrofit any CNN architecture and loss function or even other learning methods, thus enabling multiple predictions for a wide variety of tasks. Second, it exposes the variance of different hypotheses, thus providing insights into our model and predictions. Third, as shown in our experiments, allowing multiple hypotheses often improves performance. For example, in the case of regression, single hypothesis prediction (SHP) models often average over distinct modes, thus resulting in unrealistic, blurred predictions. MHP models are capable of overcoming this issue, as demonstrated in Figure
4.In an extensive experimental evaluation, we consider four applications of our model: human pose estimation, future frame prediction, multilabel classification and semantic segmentation. Despite their vastly different nature, all four tasks show that MHP models improve over their corresponding SHP models and also provide additional insights into the model and into prediction variability.
We proceed in the next section by describing the related work. In Section 3, we describe our approach and detail the theory of the proposed multiple prediction framework. Next, in Section 4, we describe our experiments; here, we solidify the ideas from Section 3 and demonstrate the benefits of MHP models. Finally, in Section 5, we conclude.
2 Related Work
CNNs [21] have been shown to be flexible function approximators and have been used extensively for a wide variety of tasks, such as image classification [19, 14], object detection [29] and semantic segmentation [3]. However, the problem of predicting multiple hypotheses in computer vision has been addressed less extensively in the literature and often under different names and assumptions.
Mixture density networks (MDNs) [2]
are neural networks which learn the parameters of a Gaussian mixture model to deal with multimodal regression tasks. MDNs differ from our approach in two major ways. First, MDNs are limited to regression, whereas MHP models are loss agnostic and therefore extend naturally to many tasks. Second, rather than predicting a mixture of Gaussians as in MDNs, MHP models yield a Voronoi tessellation in the output space which is induced by the chosen loss. In our experiments (Section
4) we also show that MDNs can be difficult to train in higher dimensions due to numerical instabilities in high dimensional, multivariate Gaussian distributions.
Multiple Choice Learning [4, 22, 23] is a line of work that focuses on predicting multiple possibilities for each input, while in [13] the goal is to also enforce diversity among the predictions. In closely related work, Lee [23], train an ensemble of networks with a minimum formulation that is similar to ours. We extend these ideas by providing a mathematical understanding why this formulation is beneficial, extend to regression tasks and introduce a relaxation that helps convergence. Instead of training separate networks for each choice, we use a shared architecture for the hypotheses which saves a considerable amount of parameters and enables information exchange between predictions.
Gao [9] deal with label ambiguity in different domains, such as age estimation and image classification, and study the improvement on performance when training CNNs with soft, probabilistic class assignments and KullbackLeibler (KL) divergence. Geng also propose multilabel approaches for age estimation [11] and head pose estimation [10].
Unlike singlelabel image classification, multilabel recognition is more general and relevant in real applications, as objects usually appear in their natural environment along with more objects of different categories. This direction is receiving increasing attention as many approaches have been proposed to handle the label ambiguity in image classification. Wang [36]
propose to model label dependency by using a recurrent neural network (RNN) on top of a CNN. This task has also been tackled using deep convolutional ranking
[12]. Several other works propose pipelines of object proposals or use ground truth bounding boxes and/or classifiers to predict multiple labels
[37, 38, 39].In future prediction, uncertainty is inherent in the task itself. Especially for robotic applications, it is sometimes crucial to predict what humans will be doing [18]. In [40] Yuen and Torralba transfer motion from a video database to images. Lerer [24] predict the configuration and fall probability of block towers. Multiple predictions have also been used by Vondrick [34] for future frame anticipation. In [7] Fouhey and Zitnick predict spatiotemporal likelihood distributions for humans in cartoons and pictures. Walker [35]
deal with uncertainty by predicting dense trajectories of motion using a variational autoencoder.
Except [2] and possibly [9] that addresses classification, all these works are driven by a specific application, rendering their translation to other tasks not straightforward.
There also exists some work that focuses on obtaining confidences for the predictions from the network. Gal [8] instead analyze how sampling from dropout layers can be used to extract uncertainty estimates from the network. Kingma [16]
propose a stochastic gradient variational Bayes estimator to estimate the posterior probability.
As our method is based on the mathematical concept of (centroidal) Voronoi tesselations, we refer the interested reader to the more general book of Okabe [28] or to Du [5], which is more closely related to this work. However, detailed knowledge of Voronoi tesselations is not necessary to understand our approach.
3 Methods
Here, we describe the proposed ambiguityaware model and investigate its relationship to traditional (unambiguous) prediction models. We represent the vector space of input variables by
and the vector space of output variables or labels by We assume that we are given a set of training tuples , where . Furthermore, we denote the joint probability density over input variables and labels by , where denotes the conditional probability for the label given the input .3.1 The Unambiguous Prediction Model
In a supervised learning scenario, we are interested in training a predictor
, parameterized by , such that the expected error(1) 
is minimized, where it is assumed that the training samples follow . Here, can be any loss function, for example the classical loss
(2) 
For sufficiently large , Equation (1) yields a good approximation of the continuous formulation
(3) 
In that case, Equation (3) is minimized by the conditional average (see e.g. [17]).
(4) 
However, depending on the complexity of the conditional density , the conditional average can be a poor representation. For example, in a mixture model of two well separated Gaussian distributions, the expected value falls between the two means, where the probability density is low.
3.2 The Ambiguous Prediction Model
If, given , single predictions essentially represent the expected value distribution with a single constant value , then it follows that multiple values might serve as a better approximation. To this end, let us assume that we develop a prediction function that is capable of providing predictions:
(5) 
The idea is, to compute the loss always for the closest of the predictions. Instead of (3), we propose to minimize
(6) 
where we consider the Voronoi tessellation of the label space which is induced by generators and the loss :
(7) 
Intuitively, the Voronoi tessellation follows the idea that each cell contains all points that are closest to its generator. Here, the closeness is defined by the loss . Thus, (6) divides the space into Voronoi cells generated by the predicted hypotheses and aggregates the loss from each.
In a typical regression case is chosen as the classical loss. In that case, the loss directly translates to intuitive geometric understanding of distance in the output space. For this case, we can further show an interesting property that helps understanding the method. If the density satisfies mild regularity conditions (it vanishes only on a subset of measure zero), the following proposition holds.
Theorem 1 (Minimizer of 6)
A necessary condition for Equation (6) to be minimal is that the generators are identical to the predictors and both correspond to a centroidal Voronoi tesselation:
(8) 
i.e. predicts the conditional mean of the Voronoi cell it defines.
Proof. At first we note that Equation (6) can be minimized in a pointwise fashion w.r.t. as both and are nonnegative. Thus, it suffices to minimize
(9) 
for every . The second equality in Equation (8) follows by computing the first variation w.r.t. as done in [5, Proposition 3.1]:
(10) 
Using the factorization and noting that the integration does not depend on , we pull out of the integrals and eventually replace by in Equation (10).
The first equality in Equation (8) can be proven by contradiction: If the generators do not coincide with , it is possible to find subsets of which have nonvanishing measure and where Equation (9) cannot be minimal. For a more detailed derivation, we refer to [5]. Intuitively, minimizing Equation (6) corresponds to finding an optimal piecewise constant approximation of the conditional distribution of labels in the output space. The hypotheses will tessellate the space into cells with minimal expected loss to their conditional average (see Equation 4).
3.3 Minimization Scheme
In this section, we detail how to compute from a set of examples . Due to their flexibility and success as general function approximators we choose to model with a (deep) neural network, more specifically a CNN, since our input domain will later be images. It is important to note, however, that the general formulation of the energy in Equation (6) leaves the choice of
free and any machine learning model could potentially be used.
To minimize Equation (6) we propose an algorithm for training neural networks with backpropagation. Our minimization scheme can be summarized in five steps:

Create the set of generators for each training sample by a forward pass though the network.

Build the tessellation of using the generators , Equation (7) and a loss function .

Compute gradients for each Voronoi cell where denotes the cardinality of .

Perform an update step of using the gradients per hypothesis from the previous step.

If a convergence criterion is fulfilled: terminate. Otherwise continue with step 1.
This algorithm can easily be implemented using a metaloss based on Equation (6). We call a meta loss because it operates on top of any given standard loss :
(11) 
We use the Kronecker delta that returns when its condition is true and otherwise, in order to select the best hypothesis for a given label . This algorithm can be seen as an extension of Lloyd’s Method [26] to gradient descent methods used for training with backpropagation.
One simple way to transform an existing network into a MHP model is to replicate the output layer times (with different initializations). During training, each of these predictions is compared to the ground truth label based on the original loss metric but weighted by as the meta loss suggests (Equation (11)). Similarly, during backpropagation,
provides a weight for the resulting gradients of the hypotheses. This algorithm can also be seen as a type of Expectation Maximization (EM) method. In the Estep, the association of the true label
to a prediction is computed and in the Mstep the parameters of the predictor are updated to better predict the target in label space.In practice, we have to relax to be able to minimize
with stochastic gradient descent. The problem comes from the fact that the generators
may be initialized so far from the target labels that all lie in a single Voronoi cell . In that case only the th generator gets updated since . To address this issue, we relax the hard assignment using a weight :(12) 
A label is now assigned to the closest hypothesis with a weight of and with to all remaining hypotheses. This formulation ensures that . Additionally, we adapt the concept from [33] to drop out full predictions with some low probability (1% in our experiments). Such treatment effectively introduces some randomness in the selection of the best hypothesis, such that ”weaker” predictions will not vanish during training. Now, even in the previously discussed case of a bad initialization, the nonselected predictions will slowly evolve until their Voronoi regions contain some training samples.
It is noteworthy that our formulation of the metaloss (see Equation (11)) is agnostic to the choice of loss function , as long as is to be minimized during the learning process. We also show the generic applicability of this method in Section 4, where we use with three different loss functions and four different CNN architectures for .
While the number of hypotheses is a hyperparameter for this model, we do not see any deterioration in performance when increasing in all regression problems. In fact, almost every method that models posterior probabilities needs some form of handtuned model parameter: means (), MDNs [2] (number of Gaussians ).
4 Experiments
In this section, we perform extensive experiments to validate different properties of the proposed approach.

Using a 2D toy example, we show an intuition of the Voronoi representation of the model in Section 4.1.

We use human pose estimation as a standard lowdimensional regression problem in Section 4.2 to highlight the underlying information that can be obtained by analyzing the variance across hypotheses.

In the scenario of future frameprediction, we demonstrate that the approach generalizes to highdimensional problems and that the predicted images become sharper with more predictions (Section 4.3).
We emphasize that for all these applications we use simple, singlestage models to study the behavior and evaluate the concept of multiple predictions directly. Complex multistage pipelines would benefit both SHP and MHP models and likely improve their performance, but obscure the analysis of the raw MHP framework. Thus, we learn every task endtoend by training or finetuning previously proposed CNN architectures [1, 14, 20, 27]. All experiments were performed on a single NVIDIA TitanX with 12GB GPU memory. It is important to note that the influence of the number of predictions on training time is usually negligible as it affects only the last layer of the network and has only an insignificant impact on the overall execution time of the architecture. In all experiments we set the association relaxation to . We refer to our model as MHP, denoting a network trained to predict hypotheses. The corresponding single prediction model is named as SHP.
4.1 Temporal 2D Distribution
We start with a toy example of a twodimensional distribution that changes over time to demonstrate the representation that is built with an MHP model. Intuitively, we split a zerocentered square into 4 equal regions, and we smoothly transition from having high probability mass in the lowerleft and topright quadrants to having high probability mass in the upperleft and lowerright quadrants. At the whole square has uniform probability. More precisely, the 2D plane is divided into five sections :
(13)  
(14)  
(15)  
(16)  
(17) 
We then create a distribution that depends on time, by first defining the probability that get selected as , and . When a region is selected, a point is sampled from it uniformly. This creates the distribution that can be seen in the first row of Fig. 1. It transitions smoothly between the three states.
We then train a simple threelayer fully connected network with 50 neurons in both hidden layers and ReLU as activation function. The input is the time
and the output hypotheses are 2D coordinates for each prediction. The network is trained with loss as objective. We then show the Voronoi tessellation for 4MHP and 10MHP in the bottom two rows of Figure 1. The model is able to adapt the hypotheses to the conditional distribution and divides the space into Voronoi cells that match the regions. With more hypotheses the tessellation becomes finer.After having demonstrated the output representation of the model, we apply the approach to realworld problems in the following sections.
4.2 Human Pose Estimation
For the second experiment we move from 1D input, 2D output to image input and 24dimensional output. 2D human pose estimation is the task of regressing the pixel locations of the joints of a human body. In this experiment we demonstrate that our multiple prediction framework not only works with a robust loss function, but also the variation of the predictions can be used to measure the confidence of the model. Here, we adapt the model from Belagiannis [1], which uses Tukey’s biweight function as an objective, in order to study the behavior of another loss function in the MHP setting. To better understand the gain of increasing , we evaluate the strict PCP score using an oracle to select the best hypothesis which results in SHP: 59.7%, 2MHP: 60.0%, 5MHP: 61.2%, 10MHP: 62.8%. With increasing number of predictions the method is able to model the output space more and more precisely. This means that secondary approaches can be designed to select good hypotheses to further improve results.
Figure 2 shows qualitative results for human pose estimation for different . We can see that the variance of the predictions of the occluded joints (both wrists) is higher than the variance of directly visible joints like the shoulder or the hips.
body part  ankle  knee  hip  wrist  elbow  shldr 

dist. visible  4.8  3.0  1.9  5.0  3.1  2.3 
dist. occl.  5.9  3.7  2.4  5.1  3.3  2.6 
The Leeds Sports Pose dataset [15] provides, together with the human pose annotations, the information whether a joint is visible or occluded. We compute the mean distances of joint positions to the mean predicted skeleton for occluded and visible joints. Table 1 shows that this variation is a good indicator for the uncertainty of the model as it is higher for occluded joints than for visible ones. Additionally, the variance for the endeffectors (hands, feet), which are the most difficult to predict, is much higher than for more stable points like hips and shoulders.
Comparison to Mixture Density Networks
Another way of dealing with uncertainty is explicitly estimating the density of the output distribution using MDNs [2]. We note that MDNs differ from our method in two distinct points. First, MDNs estimate densities and our MHP model predicts multiple hypotheses instead. Second, MDNs are only welldefined for regression problems, whereas MHP models are agnostic to the loss and are thus more general.
We trained a MDN for human pose estimation. Although it is a relatively low dimensional problem (that is 142D joints), it proved to be challenging for MDNs, especially since the Gaussians contain exponents with the number of dimensions ( in Eq. 23 in [2]
), which causes severe numerical problems. In fact, we were unable to train the MDN with SGD with momentum, but had to resort to RMSProp as optimizer ([2] train with BGFS, a second order optimization technique, which is infeasible for deep networks due to the number of parameters).
In Figure 3 we compare the trained MDN with 5 Gaussians for the same image as the MHP cases in Figure 2. The predicted probability for the blue skeleton is 98%, for red and almost 0 for the remaining 3 (degenerated in top left corner). The MDN is unable to recover more than one reasonable hypothesis, which is similar in every frame. One reason is that all gradients for MDNs contain a multiplicative factor ( in [2]) for each component which prevents the model from learning mean and variance for this component once its is close to 0.
While MDNs have a clear advantage in predicting probabilities and variances together with the means, they are significantly more difficult to train and suffer from severe numerical instabilities in the high dimensional multivariate Gaussian distributions. Due to the simple nature of MHPs we are able to handle high dimensional problems without any stability issues. In the next section we address the task of future frame predition, for which we could not achieve convergence for MDNs.
4.3 Future Frame Prediction
Predicting the future is inherently associated with ambiguity and as such, it is an ideal problem for multiple hypothesis prediction. The goal of future frame prediction is the pixelwise estimation of a future frame in a video, given one or more previous frames, thus enclosing significant uncertainty. In this experiment we show that MHP models also extend to high dimensional problems, predicting images of resolution and . We use a fully convolutional residual architecture proposed by Laina et al. [20], which has recently shown good potential for pixelwise regression tasks, achieving stateoftheart results on depth estimation without the need for additional refinement steps. We adapt the model to MHP, such that it predicts
output maps with three channels each (RGB) by increasing the number of filters in the last upsampling layer. All filters are initialized with ResNet50 weights (pretrained on ImageNet
[30]data), where possible, and random zeromean Gaussian distributions with 0.01 standard deviation elsewhere.
Intersection
The first dataset we use for future frame prediction is a simulation of a street intersection. We generate sequences where a simplified model car approaches the intersection from a random twoway road, slows down and then chooses one of the three possible routes to leave the crossing with equal probability. In this case, we are interested in predicting the last frame of the sequence, where the car is about to exit the view but still fully visible in the image. The dataset contains a discrete uncertainty regarding which exit the car will choose and a continuous uncertainty in the exact pose of the car in the last frame. We model this problem by training a network to predict three hypotheses about the future. Figure 4 shows a sample sequence. The first and second row show the single input frame and the target frame respectively. In the first two time stamps (), when the car is approaching the intersection and the destination is still unclear, the MHP outputs are distributed over the plausible outcomes as each hypothesis predicts a different possible exit location north, east or west for the car coming from the south. The SHP model predicts an unrealistic frame where each exit shows a car which is the conditional average frame (see Equation 4). At when the car starts taking a right turn, we observe that the three predictions collapse into a single decision (the eastern exit) with small variations in location and rotation to model the variance in exit pose. Here, the SHP model is also correct, since the uncertainty vanished.
The network is able to recognize whether a decision about the exit has been already made or not, and predicts a different selection of hypotheses in each of the two cases. In the first two time steps, one can see faint ghostcars for the nonselected exits; this is because of the balancing factor that pulls the predictions slightly towards the conditional average, which is however necessary to avoid starving predictions during training, as detailed in Sec. 3.3.
NTU Action Recognition Dataset
Turning to real images, we evaluate the multiple hypothesis model on real data using the NTU RGBD Action Recognition dataset [31]. We use only the RGB videos for training and testing. Additionally, we automatically crop each sequence around the moving parts by thresholding the per pixel change between frames, since large parts of the frame are only static background. The network is expected to learn the outcome of an action and predict the image at the end of the sequence. To analyze the image quality, we compute the mean gradient magnitude of a prediction, as a measure of sharpness:
(18) 
iterates over pixel locations, and are the image dimensions and indexes the color channel.
Model  Sharpness  Min. MSE 

SHP  319.5  960.6 
5MHP  359.2  808.2 
10MHP  419.7  728.5 
In Table 2 we compare the sharpness for the put on a hat/cap action. With more predictions we produce sharper images and a lower error. This effect can also be observed qualitatively in Figure 5, where the improved image sharpness from 1 to 10 predictions becomes evident. Additionally, we display the perpixel variance map which we compute in the case of multiple predictions. The map clearly identifies the person’s head and shoulders as regions with higher estimated perpixel uncertainty. In this experiment we have shown that the MHP formulation extends to highdimensional problems. Finally, we apply MHP to two discrete tasks: image segmentation and classification.
4.4 Multiple Object Classification
Many previous approaches argue that singlelabel CNN models are not suitable for multilabel object recognition and propose multistage methods; we instead show that extending such a CNN architecture with the multiple hypothesis principle can achieve competitive performance for multiple labels, without the need for multistage pipelines. We finetune a ResNet101^{1}^{1}1ResNet50 [14] and VGG16 [32] behave similarly but with 23% worse performance. For brevity we only show ResNet101 results here. pretrained on ImageNet data and replace the output layer such that it predicts a set of class confidences for hypotheses ( values in total).
VOC07  VOC12  COCO  COCO  
Method/Dataset  mAP  mAP  mAP  mAP@10 
WARP [12]        49.2 
HCP1000 [38]  81.5       
CNNRNN [36]  84.0      61.2 
SHP (baseline)  83.8  86.9  65.2  81.0 
3MHP (ours)  84.1  87.3  66.1  82.2 
5MHP (ours)  84.7  87.5  67.8  83.3 
9MHP (ours)  85.1  87.6  67.4  82.8 
13MHP (ours)  84.7  87.0  67.7  83.1 
We can also address the problem of multilabel image classification as an MHP task, where models the confidence that an instance of a certain class appears in the image . During training we give every image a probabilistic label that is uniformly selected from all classes that exist in the image. For example, if an image contains two bikes and a person, every time the image is sampled during training it will be labeled either as bike or person with chance. The network needs to resolve this label ambiguity.
For evaluation, we use the 2007 and 2012 renditions of the Pascal Visual Object Classes (VOC) [6] dataset. There exist twenty different classes (). In our experiments, we train the networks using the train set of VOC2012 and evaluate their performance on the VOC2012 val and VOC2007 test splits. Additionally, we evaluate the MHP method on the MS Common Objects in Context (COCO) [25] containing classes, 82,783 training images and 40,504 validation images, which we use as testing data. Here, the number of classes per image varies considerably.
In Table 3 we show multilabel recognition results and compare them to three other methods using the mean average precision (mAP) and mAP@10 metrics. mAP@ computes the mAP for the classes that were detected with the highest confidence. We observe that all MHP models outperform the SHP baseline. In this discrete problem, it is natural that at high (in this case ) the performance decreases since there are often more predictions that possible discrete outcomes. In this case the additional hypotheses contribute some noise that reduces the scores slightly.
Figure 6 shows qualitative results for different . We report the class with the highest confidence after softmax of each prediction. The networks trained with multiple predictions are able to identify additional objects in the image, as opposed to the singlelabel prediction. When only a single class dominates the image, the predictions all tend to the same class. For the qualitative results we use the class with the highest probability per hypothesis.
4.5 Image Segmentation
Finally, to be able to compare directly to multiple choice learning (MCL) [23] we trained a 4MHP FCN8s [27] for semantic segmentation on VOC2012. MCL trains separate networks making information exchange between ensemble members harder. Additionally, a full CNN needs to be trained for every single output of the ensemble, whereas adding more hypotheses does not add much overhead in our approach. Our model achieves a mean IoU of 70.3%, compared to MCL’s 69.1% and uses 1/4 of the parameters (134.9M [ours] compared to 539.6M [23]).
In these last two experiments we showed that the MHP framework generalizes to discrete problems as well and thus is applicable for a wide variety of applications.
5 Conclusions
We introduced a framework for multiple hypothesis prediction (MHP). This framework is principled, yielding a Voronoi tessellation in the output space, and simple, as it can easily be retrofitted to existing single hypothesis prediction (SHP) models and can be optimized with standard techniques such as backpropagation and gradient descent.
In an extensive set of experiments, we showed that MHP models routinely outperform their SHP counterparts, and that they simultaneously provide additional insights into the model.
We demonstrated the representation of the output space as a Voronoi tessellation, the benefits of additional information in the variance over hypotheses and the applicability to high dimensional and discrete problems.
In future work, we hope to investigate the application of MHP models to timeseries and other sequential data.
Acknowledgments
This work was supported by the TUM  IAS (German Excellence Initiative  FP7 Grant 291763).
References
 [1] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab. Robust optimization for deep regression. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 2830–2838. IEEE, 2015.
 [2] C. M. Bishop. Mixture density networks. 1994.
 [3] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
 [4] D. Dey, V. Ramakrishna, M. Hebert, and J. Andrew Bagnell. Predicting multiple structured visual interpretations. In Proceedings of the IEEE International Conference on Computer Vision, pages 2947–2955, 2015.
 [5] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: applications and algorithms. SIAM review, 41(4):637–676, 1999.
 [6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, jun 2010.

[7]
D. F. Fouhey and C. L. Zitnick.
Predicting object dynamics in scenes.
In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pages 2019–2026, 2014.  [8] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2, 2015.
 [9] B.B. Gao, C. Xing, C.W. Xie, J. Wu, and X. Geng. Deep label distribution learning with label ambiguity. arXiv preprint arXiv:1611.01731, 2016.
 [10] X. Geng and Y. Xia. Head pose estimation based on multivariate label distribution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1837–1842, 2014.
 [11] X. Geng, C. Yin, and Z.H. Zhou. Facial age estimation by learning from label distributions. IEEE transactions on pattern analysis and machine intelligence, 35(10):2401–2412, 2013.
 [12] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe. Deep convolutional ranking for multilabel image annotation. arXiv preprint arXiv:1312.4894, 2013.
 [13] A. GuzmanRivera, P. Kohli, D. Batra, and R. Rutenbar. Efficiently enforcing diversity in multioutput structured prediction. In Artificial Intelligence and Statistics, pages 284–292, 2014.
 [14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.
 [15] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In Proceedings of the British Machine Vision Conference, 2010. doi:10.5244/C.24.12.
 [16] D. P. Kingma and M. Welling. Autoencoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
 [17] A. N. Kolmogorov. Foundations of the theory of probability. pages 47–64, 1950.
 [18] H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. IEEE transactions on pattern analysis and machine intelligence, 38(1):14–29, 2016.
 [19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
 [20] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth prediction with fully convolutional residual networks. In 3D Vision (3DV), 2016 Fourth International Conference on, pages 239–248. IEEE, 2016.
 [21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
 [22] K. Lee, C. Hwang, K. Park, and J. Shin. Confident multiple choice learning. arXiv preprint arXiv:1706.03475, 2017.
 [23] S. Lee, S. P. S. Prakash, M. Cogswell, V. Ranjan, D. Crandall, and D. Batra. Stochastic multiple choice learning for training diverse deep ensembles. In Advances in Neural Information Processing Systems, pages 2119–2127, 2016.
 [24] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. arXiv preprint arXiv:1603.01312, 2016.
 [25] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.
 [26] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982.
 [27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.
 [28] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams, volume 501. John Wiley & Sons, 2009.
 [29] S. Ren, K. He, R. Girshick, and J. Sun. Faster RCNN: Towards realtime object detection with region proposal networks. In Advances in Neural Information Processing Systems (NIPS), 2015.
 [30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. FeiFei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
 [31] A. Shahroudy, J. Liu, T.T. Ng, and G. Wang. Ntu rgb+d: A large scale dataset for 3d human activity analysis. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
 [32] K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image recognition. CoRR, abs/1409.1556, 2014.
 [33] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.
 [34] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating the future by watching unlabeled video. arXiv preprint arXiv:1504.08023, 2015.
 [35] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In European Conference on Computer Vision, pages 835–851. Springer, 2016.
 [36] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnnrnn: A unified framework for multilabel image classification. Proceedings of the Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
 [37] M. Wang, C. Luo, R. Hong, J. Tang, and J. Feng. Beyond object proposals: Random crop pooling for multilabel image recognition. IEEE Transactions on Image Processing, 25(12), 2016.
 [38] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan. Cnn: Singlelabel to multilabel. arXiv preprint arXiv:1406.5726, 2014.
 [39] H. Yang, J. T. Zhou, Y. Zhang, B.B. Gao, J. Wu, and J. Cai. Can partial strong labels boost multilabel object recognition? arXiv preprint arXiv:1504.05843, 2015.
 [40] J. Yuen and A. Torralba. A datadriven approach for event prediction. In European Conference on Computer Vision, pages 707–720. Springer, 2010.
Comments
There are no comments yet.