Learning Hierarchical Graph Neural Networks for Image Clustering

07/03/2021 ∙ by Yifan Xing, et al. ∙ 5

We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities using a training set of images annotated with labels belonging to a disjoint set of identities. Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level. Unlike fully unsupervised hierarchical clustering, the choice of grouping and complexity criteria stems naturally from supervision in the training set. The resulting method, Hi-LANDER, achieves an average of 54 and 8 GNN-based clustering algorithms. Additionally, state-of-the-art GNN-based methods rely on separate models to predict linkage probabilities and node densities as intermediate steps of the clustering process. In contrast, our unified framework achieves a seven-fold decrease in computational cost. We release our training and inference code at https://github.com/dmlc/dgl/tree/master/examples/pytorch/hilander.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 10

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.