Learning Gaussian Networks

02/27/2013 ∙ by Dan Geiger, et al. ∙ 0

We describe algorithms for learning Bayesian networks from a combination of user knowledge and statistical data. The algorithms have two components: a scoring metric and a search procedure. The scoring metric takes a network structure, statistical data, and a user's prior knowledge, and returns a score proportional to the posterior probability of the network structure given the data. The search procedure generates networks for evaluation by the scoring metric. Previous work has concentrated on metrics for domains containing only discrete variables, under the assumption that data represents a multinomial sample. In this paper, we extend this work, developing scoring metrics for domains containing all continuous variables or a mixture of discrete and continuous variables, under the assumption that continuous data is sampled from a multivariate normal distribution. Our work extends traditional statistical approaches for identifying vanishing regression coefficients in that we identify two important assumptions, called event equivalence and parameter modularity, that when combined allow the construction of prior distributions for multivariate normal parameters from a single prior Bayesian network specified by a user.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.