Learning from Pairwise Marginal Independencies

08/02/2015
by   Johannes Textor, et al.
0

We consider graphs that represent pairwise marginal independencies amongst a set of variables (for instance, the zero entries of a covariance matrix for normal data). We characterize the directed acyclic graphs (DAGs) that faithfully explain a given set of independencies, and derive algorithms to efficiently enumerate such structures. Our results map out the space of faithful causal models for a given set of pairwise marginal independence relations. This allows us to show the extent to which causal inference is possible without using conditional independence tests.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset