Learning enables adaptation in cooperation for multi-player stochastic games

07/29/2020 ∙ by Feng Huang, et al. ∙ 0

Interactions among individuals in natural populations often occur in a dynamically changing environment. Understanding the role of environmental variation in population dynamics has long been a central topic in theoretical ecology and population biology. However, the key question of how individuals, in the middle of challenging social dilemmas (e.g., the "tragedy of the commons"), modulate their behaviors to adapt to the fluctuation of the environment has not yet been addressed satisfactorily. Utilizing evolutionary game theory and stochastic games, we develop a game-theoretical framework that incorporates the adaptive mechanism of reinforcement learning to investigate whether cooperative behaviors can evolve in the ever-changing group interaction environment. When the action choices of players are just slightly influenced by past reinforcements, we construct an analytical condition to determine whether cooperation can be favored over defection. Intuitively, this condition reveals why and how the environment can mediate cooperative dilemmas. Under our model architecture, we also compare this learning mechanism with two non-learning decision rules, and we find that learning significantly improves the propensity for cooperation in weak social dilemmas, and, in sharp contrast, hinders cooperation in strong social dilemmas. Our results suggest that in complex social-ecological dilemmas, learning enables the adaptation of individuals to varying environments.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 13

page 34

page 35

page 36

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.