Learning Efficient Multi-agent Communication: An Information Bottleneck Approach

11/16/2019
by   Rundong Wang, et al.
0

Many real-world multi-agent reinforcement learning applications require agents to communicate, assisted by a communication protocol. These applications face a common and critical issue of communication's limited bandwidth that constrains agents' ability to cooperate successfully. In this paper, rather than proposing a fixed communication protocol, we develop an Informative Multi-Agent Communication (IMAC) method to learn efficient communication protocols. Our contributions are threefold. First, we notice a fact that a limited bandwidth translates into a constraint on the communicated message entropy, thus paving the way of controlling the bandwidth. Second, we introduce a customized batch-norm layer, which controls the messages' entropy to simulate the limited bandwidth constraint. Third, we apply the information bottleneck method to discover the optimal communication protocol, which can satisfy a bandwidth constraint via training with the prior distribution in the method. To demonstrate the efficacy of our method, we conduct extensive experiments in various cooperative and competitive multi-agent tasks across two dimensions: the number of agents and different bandwidths. We show that IMAC converges fast, and leads to efficient communication among agents under the limited-bandwidth constraint as compared to many baseline methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro