Learning Domain Invariant Prompt for Vision-Language Models
Prompt learning is one of the most effective and trending ways to adapt powerful vision-language foundation models like CLIP to downstream datasets by tuning learnable prompt vectors with very few samples. However, although prompt learning achieves excellent performance over in-domain data, it still faces the major challenge of generalizing to unseen classes and domains. Some existing prompt learning methods tackle this issue by adaptively generating different prompts for different tokens or domains but neglecting the ability of learned prompts to generalize to unseen domains. In this paper, we propose a novel prompt learning paradigm that directly generates domain invariant prompt generalizable to unseen domains, called MetaPrompt. Specifically, a dual-modality prompt tuning network is proposed to generate prompts for inputs from both image and text modalities. More importantly, we propose a meta-learning-based prompt tuning algorithm that explicitly constrains the prompt tuned on a specific domain or class also to achieve good performance on another domain or class. Extensive experiments on 11 datasets for base-to-new generalization and four datasets for domain generalization demonstrate that our method consistently and significantly outperforms existing methods.
READ FULL TEXT