Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets

03/22/2016
by   Vishwajeet Singh, et al.
0

As machine learning is applied to an increasing variety of complex problems, which are defined by high dimensional and complex data sets, the necessity for task oriented feature learning grows in importance. With the advancement of Deep Learning algorithms, various successful feature learning techniques have evolved. In this paper, we present a novel way of learning discriminative features by training Deep Neural Nets which have Encoder or Decoder type architecture similar to an Autoencoder. We demonstrate that our approach can learn discriminative features which can perform better at pattern classification tasks when the number of training samples is relatively small in size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro