Learning Condition–Action Rules for Personalised Journey Recommendations
We apply a learning classifier system, XCSI, to the task of providing personalised suggestions for passenger onward journeys. Learning classifier systems combine evolutionary computation with rule-based machine learning, altering a population of rules to achieve a goal through interaction with the environment. Here XCSI interacts with a simulated environment of passengers travelling around the London Underground network, subject to disruption. We show that XCSI successfully learns individual passenger preferences and can be used to suggest personalised adjustments to the onward journey in the event of disruption.
READ FULL TEXT