Learning Architectures for Binary Networks

02/17/2020
by   Kunal Pratap Singh, et al.
0

Backbone architectures of most binary networks are well-known floating point architectures, such as the ResNet family. Questioning that the architectures designed for floating-point networks would not be the best for binary networks, we propose to search architectures for binary networks (BNAS). Specifically, based on the cell based search method, we define a new set of layer types, design a new cell template, and rediscover the utility of and propose to use the Zeroise layer to learn well-performing binary networks. In addition, we propose to diversify early search to learn better performing binary architectures. We show that our searched binary networks outperform state-of-the-art binary networks on CIFAR10 and ImageNet datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro