Learning Antidote Data to Individual Unfairness

11/29/2022
by   Peizhao Li, et al.
0

Fairness is an essential factor for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, following a consensus that `similar individuals should be treated similarly,' is a vital notion to guarantee fair treatment for individual cases. Previous methods typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes, and solve it by adopting the Distributionally Robust Optimization (DRO) paradigm. However, adversarial perturbations along a direction covering sensitive information do not consider the inherent feature correlations or innate data constraints, and thus mislead the model to optimize at off-manifold and unrealistic samples. In light of this, we propose a method to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These on-manifold antidote data can be used through a generic optimization procedure with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments, we demonstrate our antidote data resists individual unfairness at a minimal or zero cost to the model's predictive utility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro