Learning and T-Norms Theory

07/26/2019
by   Giuseppe Marra, et al.
2

Deep learning has been shown to achieve impressive results in several domains like computer vision and natural language processing. Deep architectures are typically trained following a supervised scheme and, therefore, they rely on the availability of a large amount of labeled training data to effectively learn their parameters. Neuro-symbolic approaches have recently gained popularity to inject prior knowledge into a deep learner without requiring it to induce this knowledge from data. These approaches can potentially learn competitive solutions with a significant reduction of the amount of supervised data. A large class of neuro-symbolic approaches is based on First-Order Logic to represent prior knowledge, that is relaxed to a differentiable form using fuzzy logic. This paper shows that the loss function expressing these neuro-symbolic learning tasks can be unambiguously determined given the selection of a t-norm generator. When restricted to simple supervised learning, the presented theoretical apparatus provides a clean justification to the popular cross-entropy loss, that has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. One advantage of the proposed learning formulation is that it can be extended to all the knowledge that can be represented by a neuro-symbolic method, and it allows the development of a novel class of loss functions, that the experimental results show to lead to faster convergence rates than other approaches previously proposed in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset