Learning Adaptable Risk-Sensitive Policies to Coordinate in Multi-Agent General-Sum Games
In general-sum games, the interaction of self-interested learning agents commonly leads to socially worse outcomes, such as defect-defect in the iterated stag hunt (ISH). Previous works address this challenge by sharing rewards or shaping their opponents' learning process, which require too strong assumptions. In this paper, we demonstrate that agents trained to optimize expected returns are more likely to choose a safe action that leads to guaranteed but lower rewards. However, there typically exists a risky action that leads to higher rewards in the long run only if agents cooperate, e.g., cooperate-cooperate in ISH. To overcome this, we propose using action value distribution to characterize the decision's risk and corresponding potential payoffs. Specifically, we present Adaptable Risk-Sensitive Policy (ARSP). ARSP learns the distributions over agent's return and estimates a dynamic risk-seeking bonus to discover risky coordination strategies. Furthermore, to avoid overfitting training opponents, ARSP learns an auxiliary opponent modeling task to infer opponents' types and dynamically alter corresponding strategies during execution. Empirically, agents trained via ARSP can achieve stable coordination during training without accessing opponent's rewards or learning process, and can adapt to non-cooperative opponents during execution. To the best of our knowledge, it is the first method to learn coordination strategies between agents both in iterated prisoner's dilemma (IPD) and iterated stag hunt (ISH) without shaping opponents or rewards, and can adapt to opponents with distinct strategies during execution. Furthermore, we show that ARSP can be scaled to high-dimensional settings.
READ FULL TEXT