Learn to Focus: Hierarchical Dynamic Copy Network for Dialogue State Tracking

07/25/2021
by   Linhao Zhang, et al.
0

Recently, researchers have explored using the encoder-decoder framework to tackle dialogue state tracking (DST), which is a key component of task-oriented dialogue systems. However, they regard a multi-turn dialogue as a flat sequence, failing to focus on useful information when the sequence is long. In this paper, we propose a Hierarchical Dynamic Copy Network (HDCN) to facilitate focusing on the most informative turn, making it easier to extract slot values from the dialogue context. Based on the encoder-decoder framework, we adopt a hierarchical copy approach that calculates two levels of attention at the word- and turn-level, which are then renormalized to obtain the final copy distribution. A focus loss term is employed to encourage the model to assign the highest turn-level attention weight to the most informative turn. Experimental results show that our model achieves 46.76 MultiWOZ 2.1 dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset