LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed Sensing CT

12/13/2020 ∙ by Yi Zhang, et al. ∙ 0

Compressed sensing (CS) computed tomography has been proven to be important for several clinical applications, such as sparse-view computed tomography (CT), digital tomosynthesis and interior tomography. Traditional compressed sensing focuses on the design of handcrafted prior regularizers, which are usually image-dependent and time-consuming. Inspired by recently proposed deep learning-based CT reconstruction models, we extend the state-of-the-art LEARN model to a dual-domain version, dubbed LEARN++. Different from existing iteration unrolling methods, which only involve projection data in the data consistency layer, the proposed LEARN++ model integrates two parallel and interactive subnetworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously, which can fully explore the latent relations between projection data and reconstructed images. The experimental results demonstrate that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 3

page 4

page 5

page 6

page 8

page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.