Learn from Anywhere: Rethinking Generalized Zero-Shot Learning with Limited Supervision

07/11/2021
by   Gaurav Bhatt, et al.
0

A common problem with most zero and few-shot learning approaches is they suffer from bias towards seen classes resulting in sub-optimal performance. Existing efforts aim to utilize unlabeled images from unseen classes (i.e transductive zero-shot) during training to enable generalization. However, this limits their use in practical scenarios where data from target unseen classes is unavailable or infeasible to collect. In this work, we present a practical setting of inductive zero and few-shot learning, where unlabeled images from other out-of-data classes, that do not belong to seen or unseen categories, can be used to improve generalization in any-shot learning. We leverage a formulation based on product-of-experts and introduce a new AUD module that enables us to use unlabeled samples from out-of-data classes which are usually easily available and practically entail no annotation cost. In addition, we also demonstrate the applicability of our model to address a more practical and challenging, Generalized Zero-shot under a limited supervision setting, where even base seen classes do not have sufficient annotated samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset