lbmpy: A flexible code generation toolkit for highly efficient lattice Boltzmann simulations

01/31/2020 ∙ by Martin Bauer, et al. ∙ 0

Lattice Boltzmann methods are a popular mesoscopic alternative to macroscopic computational fluid dynamics solvers. Many variants have been developed that vary in complexity, accuracy, and computational cost. Extensions are available to simulate multi-phase, multi-component, turbulent, or non-Newtonian flows. In this work we present lbmpy, a code generation package that supports a wide variety of different methods and provides a generic development environment for new schemes as well. A high-level domain-specific language allows the user to formulate, extend and test various lattice Boltzmann schemes. The method specification is represented in a symbolic intermediate representation. Transformations that operate on this intermediate representation optimize and parallelize the method, yielding highly efficient lattice Boltzmann compute kernels not only for single- and two-relaxation-time schemes but also for multi-relaxation-time, cumulant, and entropically stabilized methods. An integration into the HPC framework waLBerla makes massively parallel, distributed simulations possible, which is demonstrated through scaling experiments on the SuperMUC-NG supercomputing system



There are no comments yet.


page 1

page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.