LBGP: Learning Based Goal Planning for Autonomous Following in Front

11/05/2020
by   Payam Nikdel, et al.
0

This paper investigates a hybrid solution which combines deep reinforcement learning (RL) and classical trajectory planning for the following in front application. Here, an autonomous robot aims to stay ahead of a person as the person freely walks around. Following in front is a challenging problem as the user's intended trajectory is unknown and needs to be estimated, explicitly or implicitly, by the robot. In addition, the robot needs to find a feasible way to safely navigate ahead of human trajectory. Our deep RL module implicitly estimates human trajectory and produces short-term navigational goals to guide the robot. These goals are used by a trajectory planner to smoothly navigate the robot to the short-term goals, and eventually in front of the user. We employ curriculum learning in the deep RL module to efficiently achieve a high return. Our system outperforms the state-of-the-art in following ahead and is more reliable compared to end-to-end alternatives in both the simulation and real world experiments. In contrast to a pure deep RL approach, we demonstrate zero-shot transfer of the trained policy from simulation to the real world.

READ FULL TEXT

page 1

page 3

research
09/28/2021

Deep Reinforcement Learning with Adjustments

Deep reinforcement learning (RL) algorithms can learn complex policies t...
research
06/12/2017

Deep reinforcement learning from human preferences

For sophisticated reinforcement learning (RL) systems to interact useful...
research
09/28/2022

Zero-Shot Retargeting of Learned Quadruped Locomotion Policies Using Hybrid Kinodynamic Model Predictive Control

Reinforcement Learning (RL) has witnessed great strides for quadruped lo...
research
07/13/2020

AirCapRL: Autonomous Aerial Human Motion Capture using Deep Reinforcement Learning

In this letter, we introduce a deep reinforcement learning (RL) based mu...
research
11/09/2022

RL-DWA Omnidirectional Motion Planning for Person Following in Domestic Assistance and Monitoring

Robot assistants are emerging as high-tech solutions to support people i...
research
10/31/2020

Deep Reactive Planning in Dynamic Environments

The main novelty of the proposed approach is that it allows a robot to l...
research
12/22/2016

First-Person Activity Forecasting with Online Inverse Reinforcement Learning

We address the problem of incrementally modeling and forecasting long-te...

Please sign up or login with your details

Forgot password? Click here to reset