Layered Drawing of Undirected Graphs with Generalized Port Constraints

08/24/2020
by   Julian Walter, et al.
0

The aim of this research is a practical method to draw cable plans of complex machines. Such plans consist of electronic components and cables connecting specific ports of the components. Since the machines are configured for each client individually, cable plans need to be drawn automatically. The drawings must be well readable so that technicians can use them to debug the machines. In order to model plug sockets, we introduce port groups; within a group, ports can change their position (which we use to improve the aesthetics of the layout), but together the ports of a group must form a contiguous block. We approach the problem of drawing such cable plans by extending the well-known Sugiyama framework such that it incorporates ports and port groups. Since the framework assumes directed graphs, we propose several ways to orient the edges of the given undirected graph. We compare these methods experimentally, both on real-world data and synthetic data that carefully simulates real-world data. We measure the aesthetics of the resulting drawings by counting bends and crossings. Using these metrics, we compare our approach to Kieler [JVLC 2014], a library for drawing graphs in the presence of port constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset