Later-stage Minimum Bayes-Risk Decoding for Neural Machine Translation

04/11/2017
by   Raphael Shu, et al.
0

For extended periods of time, sequence generation models rely on beam search algorithm to generate output sequence. However, the correctness of beam search degrades when the a model is over-confident about a suboptimal prediction. In this paper, we propose to perform minimum Bayes-risk (MBR) decoding for some extra steps at a later stage. In order to speed up MBR decoding, we compute the Bayes risks on GPU in batch mode. In our experiments, we found that MBR reranking works with a large beam size. Later-stage MBR decoding is shown to outperform simple MBR reranking in machine translation tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset