Latent Space based Memory Replay for Continual Learning in Artificial Neural Networks

Memory replay may be key to learning in biological brains, which manage to learn new tasks continually without catastrophically interfering with previous knowledge. On the other hand, artificial neural networks suffer from catastrophic forgetting and tend to only perform well on tasks that they were recently trained on. In this work we explore the application of latent space based memory replay for classification using artificial neural networks. We are able to preserve good performance in previous tasks by storing only a small percentage of the original data in a compressed latent space version.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset