Latent linguistic embedding for cross-lingual text-to-speech and voice conversion

10/08/2020 ∙ by Hieu-Thi Luong, et al. ∙ 0

As the recently proposed voice cloning system, NAUTILUS, is capable of cloning unseen voices using untranscribed speech, we investigate the feasibility of using it to develop a unified cross-lingual TTS/VC system. Cross-lingual speech generation is the scenario in which speech utterances are generated with the voices of target speakers in a language not spoken by them originally. This type of system is not simply cloning the voice of the target speaker, but essentially creating a new voice that can be considered better than the original under a specific framing. By using a well-trained English latent linguistic embedding to create a cross-lingual TTS and VC system for several German, Finnish, and Mandarin speakers included in the Voice Conversion Challenge 2020, we show that our method not only creates cross-lingual VC with high speaker similarity but also can be seamlessly used for cross-lingual TTS without having to perform any extra steps. However, the subjective evaluations of perceived naturalness seemed to vary between target speakers, which is one aspect for future improvement.



There are no comments yet.


page 2

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.