Large-scale Dynamic Network Representation via Tensor Ring Decomposition

04/18/2023
by   Qu Wang, et al.
0

Large-scale Dynamic Networks (LDNs) are becoming increasingly important in the Internet age, yet the dynamic nature of these networks captures the evolution of the network structure and how edge weights change over time, posing unique challenges for data analysis and modeling. A Latent Factorization of Tensors (LFT) model facilitates efficient representation learning for a LDN. But the existing LFT models are almost based on Canonical Polyadic Factorization (CPF). Therefore, this work proposes a model based on Tensor Ring (TR) decomposition for efficient representation learning for a LDN. Specifically, we incorporate the principle of single latent factor-dependent, non-negative, and multiplicative update (SLF-NMU) into the TR decomposition model, and analyze the particular bias form of TR decomposition. Experimental studies on two real LDNs demonstrate that the propose method achieves higher accuracy than existing models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro