Large deviations principles of sample paths and invariant measures of numerical methods for parabolic SPDEs
For parabolic stochastic partial differential equations (SPDEs), we show that the numerical methods, including the spatial spectral Galerkin method and further the full discretization via the temporal accelerated exponential Euler method, satisfy the uniform sample path large deviations. Combining the exponential tail estimate of invariant measures, we establish the large deviations principles (LDPs) of invariant measures of these numerical methods. Based on the error estimate between the rate function of the considered numerical methods and that of the original equation, we prove that these numerical methods can weakly asymptotically preserve the LDPs of sample paths and invariant measures of the original equation. This work provides an approach to proving the weakly asymptotical preservation for the above two LDPs for SPDEs with small noise via numerical methods, by means of the minimization sequences.
READ FULL TEXT