Large-Context Conversational Representation Learning: Self-Supervised Learning for Conversational Documents

02/16/2021
by   Ryo Masumura, et al.
0

This paper presents a novel self-supervised learning method for handling conversational documents consisting of transcribed text of human-to-human conversations. One of the key technologies for understanding conversational documents is utterance-level sequential labeling, where labels are estimated from the documents in an utterance-by-utterance manner. The main issue with utterance-level sequential labeling is the difficulty of collecting labeled conversational documents, as manual annotations are very costly. To deal with this issue, we propose large-context conversational representation learning (LC-CRL), a self-supervised learning method specialized for conversational documents. A self-supervised learning task in LC-CRL involves the estimation of an utterance using all the surrounding utterances based on large-context language modeling. In this way, LC-CRL enables us to effectively utilize unlabeled conversational documents and thereby enhances the utterance-level sequential labeling. The results of experiments on scene segmentation tasks using contact center conversational datasets demonstrate the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset