LAMA-Net: Unsupervised Domain Adaptation via Latent Alignment and Manifold Learning for RUL Prediction
Prognostics and Health Management (PHM) is an emerging field which has received much attention from the manufacturing industry because of the benefits and efficiencies it brings to the table. And Remaining Useful Life (RUL) prediction is at the heart of any PHM system. Most recent data-driven research demand substantial volumes of labelled training data before a performant model can be trained under the supervised learning paradigm. This is where Transfer Learning (TL) and Domain Adaptation (DA) methods step in and make it possible for us to generalize a supervised model to other domains with different data distributions with no labelled data. In this paper, we propose LAMA-Net, an encoder-decoder based model (Transformer) with an induced bottleneck, Latent Alignment using Maximum Mean Discrepancy (MMD) and manifold learning is proposed to tackle the problem of Unsupervised Homogeneous Domain Adaptation for RUL prediction. LAMA-Net is validated using the C-MAPSS Turbofan Engine dataset by NASA and compared against other state-of-the-art techniques for DA. The results suggest that the proposed method offers a promising approach to perform domain adaptation in RUL prediction. Code will be made available once the paper comes out of review.
READ FULL TEXT